KEYSIGHT HD304MSO Mixed Signal Oscilloscope

1 GHz 14 bit

InfiniiVision HD-Series

Auto Scale Default Setup 2

Designs are Becoming More Complex, Using Signals that are Increasingly Smaller

Device and component designs are becoming more complex, using signals that are increasingly smaller. To ensure product quality and maximize product yields, engineers must troubleshoot designs by tracing multiple signals at once to identify the smallest signal errors that indicate design flaws and hardware defects. Engineers need an oscilloscope that can measure the smallest and most infrequent signal glitches beyond the noise to correct product issues.

Down-Deploying Advanced Technology, Making Precision Portable

The Cottod Setup Depley Topper Hossers/Herk Ho Top R as case (potence)0 Cottone (165 V) Cottone (16 eV)	N Analyse (JABAIN Danne Help	atta Soo www. atta www		Horizontal
Manual Na Ange A Shite Day Share Managara Managa			234V 135V 155V 155V 155V 155V 155V 155V 155	
				Vertical
μα 43 μ 30 π 100 με βου © 12000 κε/2.770 κε	384 - 184 - 284 - 187 	sia sia s		

Infiniium UXR Series 5 GHz to 110 GHz

Infiniium MXR/EXR Series 500 MHz to 6 GHz

InfiniiVision HD3 Series 200 MHz to 1 GHz

Introducing the InfiniiVision HD3 Series

Portable Precision

- Bandwidths: 200 MHz to 1 GHz
- Offers many of the features people love about InfiniiVision oscilloscopes with significantly more testing power

High signal integrity with strong combination of ADC + noise + memory + update rate:

- **4x more vertical accuracy** with 14-Bit ADC vs. 12-bit ADC (native 14-bit ADC, 16 bits hi res!)
- Half the noise floor
- Deep memory with 100 Mpts (25x more memory than 3000G)
- Uncompromised waveform update rate of 1.3M waveforms / second

KEYSIGHT

- your design with the highest accuracy
- High vertical resolution (ADC) and ENOB)
- Low noise front-end

- for oscilloscope measurements
- New deep memory architecture
- Hardware-based everything zone, serial, mask
- Fault Hunter

- flexibility in the user interface
- Immediate license upgrade no return to factory
- From power integrity to medical imaging to general debugging, HD3 provides a high degree of accuracy

Analyze with the Highest Accuracy

KEYSIGHT

KEYSIGHT

Max ENOB

HD3 Series	>10.4 bits
Closest Competitor Spec	8.9 bits
Keysight 3000G/4000G	6.9 bits

Low Noise Front-End

Other Oscilloscopes

Significantly lower noise floor than other general-purpose oscilloscopes

Optimized for Oscilloscope Measurements

By developing **custom components rather than utilizing off-the-shelf parts**, the HD3 Series offers:

- High sample rate and memory under typical testing conditions
- Uncompromised waveform update rate
- High vertical resolution, maximizing use of the ADC
- Hardware-based functions: mask, zone, serial, etc.

Deep Memory Architecture

Extends memory to the Gpts with segmented memory and a time-correlated list

New Software Technology

Fault Hunter Software!

KEYSIGHT

- The perfect tool for general debugging
- Analyze glitches, slow edges, and runts while you do other work

)0 mV,

Source

easurem

Rate(1

ase(1)

New User Interface Flexibility

- Split grids utilize full ADC and vertical resolution for every channel
- Several bandwidth limit options enables HD mode
- Custom measurement thresholds

Max Cou	nt			Reset										201
	Measur	eme	ent Thresho	Ids							:	?	×	1.5
	Chann	els	Math	Reference										-19
			Туре			Lower		Mi	ddle		Upper			(HANNA
<mark>1</mark>		* ~			15 9	%		50 %			75 %			MAR -39
2 Absolute 🗸			800.0 mV			1.200 V			1.500 V		Ð	-59		
()(.0 us 4 % ~		10 % 50 %					90 %			-79			
-636.0 us			10 9	10 %		50 %			90 %			964.01		
ent	Mean		Min	Max		Std Dev	Count							

Immediate Bandwidth & Memory Upgrades

- Bandwidths: 350 MHz, 500 MHz, 1 GHz
- Memory Options: 50 Mpts, 100 Mpts
- Pre-purchase bandwidth options (i.e. HD304MSO-500)
- Post-purchase bandwidth upgrades (i.e. HD3BW-009)

Immediate License Upgradability

Software Upgrades

- ✓ 200 MHz to 1 GHz bandwidth
- ✓ 20 to 100 Mpts memory
- ✓ 100 MHz Function Generator (HD3WAVEGEN)
- Protocol decode/trigger(HD3EMBA, HD3AUTA)
- ✓ Application support
- ✓ Warranty, services

Included Standard

- ✓ Frequency Response Analysis
- ✓ Fault Hunter
- ✓ Zone trigger
- ✓ Segmented Memory
- ✓ MSO License
- ✓ Mask Testing
- ✓ Histograms, FFT, and more!

Supporting Development and Manufacturing With Key Customer Types

- Semiconductor design
- Automotive systems
- Smart phones/wireless communications
- Consumer electronics
- Power management
- Industrial automation
- Healthcare technology and medical imaging
- Smart home, building automation, smart appliances, other IoT

- Memory architecture
- Computer components
- Microcontrollers
- Visual recognition technology
- Audio technology
- Government defense technologies: wireless devices, tactical electronic systems, antennas, radar systems, etc.

HD3 Industry Demands

Consumer Electronics Aerospace & Defense

Challenge: Quickly realizing signal integrity issues to produce a quality product

Solution: Enhance error and rare event detection in small signals with portable precision that features a 14-bit ADC with 4x more vertical accuracy than a 12-bit ADC and a fast waveform update rate

Challenge: Many of the same challenges as consumer electronics but with A&D protocols used in the control interfaces and heightened security

> **Solution:** Hardwarebased serial protocol decoding, triggering, and zone trigger paired with a fast waveform update rate reduces dead time and captures infrequent communication errors

Power Supply Testing

Challenge: Measuring small AC signals over large DC signals

Solution: Increased dynamic range with a 14bit ADC provides 4x more resolution than a 12-bit ADC, half the noise, and a power rail probe creates a portable system for detecting the smallest signals and ripples

Automotive

Challenge: Validating multiple buses at one time and ensuring proper communication between various transmitters, receivers, and sensors

Solution: Hardwarebased decoding of automotive protocols, deep and segmented memory, and fast waveform update rate, enable identification of elusive glitches

Healthcare

Challenge: Measuring signals with extreme accuracy during troubleshooting, installation, and maintenance of medical devices

Solution: High signal integrity ensures portable precision for debugging medical wearables

WKEYSIGHT

